Analytical Solution for Different Profiles of Fin with Temperature-Dependent Thermal Conductivity

نویسنده

  • A. Moradi
چکیده

Three different profiles of the straight fin that has a temperature-dependent thermal conductivity are investigated by differential transformation method DTM and compared with numerical solution. Fin profiles are rectangular, convex, and exponential. For validation of the DTM, the heat equation is solved numerically by the fourth-order Runge-Kutta method. The temperature distribution, fin efficiency, and fin heat transfer rate are presented for three fin profiles and a range of values of heat transfer parameters. DTM results indicate that series converge rapidly with high accuracy. The efficiency and base temperature of the exponential profile are higher than the rectangular and the convex profiles. The results indicate that the numerical data and analytical method are in agreement with each other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet collocation solution of non-linear Fin problem with temperature dependent thermal conductivity and heat transfer coefficient

In this paper, Wavelet Collocation Method has been used to solve nonlinear fin problem with temperature dependent thermal conductivity and heat transfer coefficient. Thermal conductivity of fin materials varies any type so that we consider thermal conductivity as the general function of temperature.  Here we consider three particular cases, where we assume that thermal conductivity is constant,...

متن کامل

Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation

In this study, the thermal performance analysis of porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Haar wavelet collocation method. The effects of various parameters on the thermal characteristics of the porous fin are investigated. It is found that as the porosity increases, the rate of heat transfer from the fin increases and the th...

متن کامل

Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method

In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...

متن کامل

Analysis of Heat transfer in Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation using Chebychev Spectral Collocation Method

In this work, analysis of heat transfer in porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Chebychev spectral collocation method. The numerical solutions are used to investigate the influence of various parameters on the thermal performance of the porous fin. The results show that increase in convective parameter, porosity parameter, ...

متن کامل

Nelder-Mead algorithm optimization and Galerkin’s method thermal performance analysis of circular porous fins with various profiles in fully wet conditions

The main objective of this research is to analyze optimization and the thermal performance of circular porous fins with four different profiles, rectangular, convex, triangular and concave under fully wet conditions. In this research, a linear model was used for the relationship between humidity and temperature. Also, modeling is assumed one-dimensional and the temperature changes only in the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011